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On the Ground-State Threshold in Random 
Two-Dimensional Ising + J  Models 
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For square, triangular, and for hexagonal lattices there is numerical and 
theoretical support that the ground-state threshold Pc between ferro- and 
paramagnetism in random 2D Ising _+J models, with p as the concentration of 
antiferromagnetic bonds, is identical to p* which is characterized by minimal 
matching properties of frustrated plaquettes. From square lattices of size 
100xl00 we have got pc,~q<0.117 by simulations which produced average 
groundstate magnetizations per spin by means of exact minimal matchings. 
Moreover, from the square L xL-lattices treated (L= 10, 20, 50, 100) we 
obtained the estimate pc.~q~0.1 which is in agreement with the Grinstein 
estimate P,.,sq ~ 0.099 and Pc,  sq '~ 0.105 by Freund and Grassberger. 

KEY WORDS: Random 2D Ising spin glasses; ground-state phase transition 
from ferro- to paramagnetism; minimal matching of frustrated plaquettes. 

1. I N T R O D U C T I O N  

The p rob l em here is to de termine  numer ica l ly  and  if poss ible  to charac-  
terize the cri t ical  concen t ra t ion  p~. of  an t i fe r romagnet ic  bonds  for the so- 
called g round-s t a t e  threshold  f rom fe r romagne t i sm to p a r a m a g n e t i s m  in 
r a n d o m  2D Ising _+J spin glasses on square,  hexagonal ,  and  t r i angula r  
lat t ices of  size L • L in the t h e r m o d y n a m i c  l imit  L-- r  oo. We put  J =  1. 
Wi th  fixed p e [0, 1 ] a r a n d o m  Ising mode l  on an L x L lat t ice is said to 
have a concen t ra t ion  p of an t i fe r romagnet ic  bonds  or  ( - 1 )  bonds  if for 
each bond  of a s tochast ic  b o n d  pa t t e rn  X (on the whole lat t ice)  the 
p robab i l i t y  to be a ( - 1 )  b o n d  is p. F o r  the t opo logy  of  regular  L x L 
lattices,  see Table  I. 
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Table I. 

Bendisch 

N u m b e r  of Basic Structural Components of Regular L x L Lattices 
under Periodic Boundary Conditions 

Lattice type Spins Bonds Plaquettes 
(lattice points) (edges) (meshes) 

Square L 2 2L 2 L 2 
Triangular L 2 3L 2 2L 2 
Hexagonal 2L 2 3L 2 L 2 

For the square lattice case we roughly outline the process, still 
in progress, of numerically conquering Pc, sq: 1976 Ono(l~ Pc, sq ~-'0.15; 
1977 Vannimenus and Toulouse(12): Pc, sq~0.09; 1977 Kirkpatrick(S): 
pc, sq~0.16; 1978 Grinstein et  al.(V): pc, sq~0.099; 1979 Bieche et  a/.(4): 
Pc, sq ~0.145; 1980 Morgenstern and Binder~ Pc, sq ~ 0 . 1 2  + 0.015; 1989 
Freund and Grassberger(61: Pc, sq ~0.105. 

There are mainly two approaches to simulate energy ground states. 
The "primal approach" uses, in a variety of methods, the flipping of ( + 1 ) 
spins to reduce the energy. The "dual approach," following a proposal of 
Toulouse, r tries to decrease the energy by so-called minimal matchings of 
frustrated plaquettes. [A square, triangular, or hexagonal plaquette is 
called frustrated if it has an odd number of ( - 1) bonds on its perimeter,] 
The primal approach refers to the minimization of the nearest neighbor 
(n.n.) total interaction energy 

E ( ~  G2,'-')~--- - -  2 Ji, jGiGJ 
n . n .  

with spin values o- i, a j=  +1, given couplings Ji . j= +1, and under some 
type of boundary conditions (e.g., periodic, fixed, or mixed b.c.). 

In the dual approach there is, for instance in the square lattice case, 
under fixed boundary conditions, the equivalent energy minimum represen- 
tation E r n i n - - - - 2 L ( L - 1 ) + 2 A m i n ,  where Ami n is the minimal matching 
length of pairwise in Manhattan metric connected frustrated plaquettes (see 
Fig. 1). For the dual approach, see refs. 2, 4, 6, and 8. 

A matching itself is given by pairs of frustrated plaquettes. Note that 
for (the here and in the following considered) fixed or periodic boundary 
conditions the number of frustrated plaquettes on an L x L lattice is always 
even. Each matched pair of frustrated plaquettes can be connected by a 
string which is piecewise linear from center to center of adjacent plaquettes 
and in general may be arranged in several ways not changing the matching. 
So a given matching usually leads to different "stringings." In such a 
stringing any two different strings must not have a line segment in 
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Fig. 1. An 8 x 8 square lattice under fixed boundary conditions (eight antiferromagnetic 
bonds in the interior). The frustrated plaquettes (with exactly one or three antiferromagnetic 
bonds) are marked by solid contours. The strings between the open circles in the plaquette 
centers illustrate a minimal matching of length A m i  n = 8. 

common .  This restriction is essential when constructing,  with respect to a 
minimal matching,  a ground-s ta te  spin configurat ion (~rp) whose violated 
bonds  (aicrjJi, j < 0) coincide just  with the bonds  crossed by a stringing of 
this minimal  matching.  

We choose the dual  approach.  With  the limit (L = or) concentra t ion  
f (p) of frustrated plaquettes,  the limit mean  energy e(p) per spin, and 2(p)  
as the limit mean  of average connect ion lengths between pairwise matched  
frustrated plaquettes in a minimal  matching,  the limit equat ions 

% ( p )  = - 2  + 2~q(p) fsq(P),  etri(P) = - 3  q- 2}~tri(p) ftri(P) 

eh~x(p ) = [ - 3 + "~hex(P) fh,~(p)]/2 

hold in the square, (8) tr iangular,  and hexagonal  (1) lattice cases for 
0 ~ p ~< 1, where 

fsq(p)=4p(1--p)[p2+(1--p)2], f tn(p)=3p(1--p)2+p 3 

fh~• = 6 p ( 1  - -  p ) [ ( 1  - -  p)4 + p4] -'l- 20p3(1 -- p)3 

Because of the above  limit equat ions the essential informat ion  
concerning the g round  states is related to the 2(p).  Bendisch, ~3) following 
an idea of Toulouse  (11~ that  a ground-s ta te  t ransi t ion between 
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ferromagnetism and paramagnetism should be indicated by some change in 
the nature of matching, decomposed 2~q(p), 

~sq(P) m~ ~ Y'[v, sq(P), ~ %,sq(p)=l  (1.1) 
v=l v=l 

where zv,~q(p) is the limit probability for connections of length v between 
matched frustrasted plaquettes in minimal matchings. With P~.sq as the site 
of the (unique) maximum of r~.~q(p) for p~<0.5 and v>~2 we have 
P~+ 1,sq < Pv, sq" Let 

P sq = l i m  P v, sq 

Then by (1.1) extremely great connection lengths v have their greatest 
influence on ~-sq(P) at ff~q. Moreover, the zv,~q(p), v >~ 2, are increasing in 
the interval [0, ff~q] and decreasing in [P2,sq, 0.5]. 

In the "basic zone" [fi~q, Pzsq] where the rv,~q, v~>2, behave dif- 
ferently, the threshold Pc,~q from ferro- to paramagnetism is localized. By 
simulations of near minimal matchings on lattices of size 150 • 150 and 
with sample size n = 15, cf. Bendisch 13), one obtains 

~q  ~ 0.07 __+ 0.01, pz~q ~ 0.161 _+ 0.008 (1.2) 

under periodic boundary conditions. Analogously, in Achilles et al. (~), 

fftri ~ 0.12 + 0.02, P2,tri ~ 0.285 
(1.3) 

Ph~ ~ 0.045 + 0.005, Pz. h~x g 0.069 

SO for each regular lattice type treated the threshold p~ is localized in a 
corresponding interval 

P<~P~<~P2 (1.4) 

without having directly simulated the magnetization, and it has been 
surmised even more restrictively that p~ e [p*, P2], with p* the concentra- 
tions p where )~(p) takes its global maximum in 0 <~ p <~0.5. We formerly 
obtained 

p~'r ..~ 0.062, p*q ~ 0.121, p*x ~ 0.203 (1.5) 

Now in this work, using this time an exact matching algorithm we 
simulated, with an enlarged sample size n=120,  indeed the mean 
magnetization per spin on square L x L lattices (L -- 10, 20, 50, 100) under 
periodic boundary conditions. Moreover we produced an improved 
estimate for p*q. Note that, for instance, in the square lattice case minimal 
matchings have been used in simulations by, e.g., Kirkpatrick (8) for L = 80 
[investigating 2sq(P)], Bieche et al. (4~ for L ~ 22 (simulating the magneti- 
zation), and Freund and Grassberger (6) for L ~ 210 (indirect study of the 
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magnetization). The simulations here, by means of "random walk 
stringings" between matched frustrated plaquettes (in order to generate the 
violated bonds), are described in Section 2. Results are presented and 
discussed in Section 3, in particular supporting the conjecture that the 
threshold Pc, sq coincides with Ps*q. 

2. S I M U L A T I O N  OF THE M A G N E T I Z A T I O N  IN THE  
D U A L  A P P R O A C H  

Let us recall that in the primal approach, for a given concentration p, 
given a square, triangular, or hexagonal L • L lattice and bond pattern X, 
the magnetization (k) mp, L(X) per spin for the kth  ground state is defined as 
follows. A spin configuration (ap) on the lattice is called a ground-state if 
E(o'l ,  0"2,.. ) = E m i  n. Let the different ground states (if(f)) is some way be 
numbered from k =  1 to k=xp, L(X). Then put 

m(f,)L(X) = Z ~(f) /d(L) for k = 1,..., Xp, r(X) 
' ] p  

where d(L)= L z for square and triangular lattices and d(L)= 2L 2 in the 
hexagonal lattice case. Averaging m(pk)L(X ) over all ground states of X, set 

Taking the expected value of/'hp~L(X ) with respect to the stochastic bond 
pattern X, let mL(p)= (rhp, L(X))x and, finally, m(p)=limL~ o~ mr(p) for 
0 ~< p ~< 1, the thermodynamic limit magnetization per spin. 

Now in the dual approach we arrive at m(p) in the following way. For 
fixed p, L, and given bond pattern X number the different minimal 
matchings in some manner from i = 1 to i = il~t(X). Then for each of these 
matchings M~ the different stringings (as introduced in Section 1) are 
numbered in some way from j = 1 to j = j~n,~(X, M~). The bonds crossed by 
such a stringing Sj are chosen to be the violated ones. Putting some spin 
to + 1, for each of these stringings we recursively calculate a global spin 
configuration * (~'J) (~p ) by means of the previously generated violated bonds. 
Now, in analogy to the primal approach, let 

p ~ L  ~ , ~  ) - -  

p 

p , L ~  ' - -  e n d  ( i ' j )  X " 

L j  ~ 

~L(p) = (~p, dx)>x 

In the thermodynamic limit we have m(p)---limL ~ o~ #L(P). 
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For fixed p, L the mean magnetization #L(P) per spin is estimated by 
a corresponding/~p,L ...... from n random bond patterns X, r random mini- 
mal matchings (X given), and s random walk stringings (X and a minimal 
matching given). Note that, since a fixed (random) minimal matching has, 
in general, a great many different stringings (see Section 1), each stringing 
leading to a ground-state spin configuration, we generate s stringings at 
random in order to get an estimate for the average magnetization with 
respect to the minimal matching considered. In practice we have chosen 
(n, r, s) =- (120, 1, 15). The restriction r = 1 is because of the difficulty of 
creating a representative sample of minimal matchings for given X. Note 
that in principle even r =  s = 1 and n sufficiently large should lead to 
a satisfactory estimate for #L(P). These simulations were achieved by an 
efficient matching algorithm described in Derigs et aL (5) 

3.  R E S U L T S  A N D  D I S C U S S I O N S  

For L =  10, 20, 50, 100 we give simulated means i?tp. L ........ q of the 
magnetization per spin on square L x L lattices under periodic boundary 
conditions. For  reasons of accuracy we present, for small values of p, the 
produced/~p,/~ ........ q in the form of Table II; for p > 0.08 the presentation is 
graphical. 

In Fig. 2 we see that, increasing the lattice size parameter from L = 10 
to L---100, there is a distinct shift to the left concerning the fall of the 
magnetization, and the "tail to the right" shrinks with decreasing finite-size 
effects. The thermodynamic limit msq(p), of the form msq(p ) > 0 for p < Pc 

Table II. Estimates IJp, t ..... s, sq of Ground-State  Magnetizat ions per 
Spin for Small Concentrat ions p of Ant i ferromagnet ic  Bonds on 

Square L x L Lattices under Periodic Boundary Conditions 

~p,L,n,r,s, sq 
(n= 120, r= 1, s= 15) 

P 
L = 100 L = 50 L = 20 L = 10 

0.010 0.9994 0.9994 0.9997 1.0000 
0.020 0.9973 0.9974 0.9975 0.9993 
0.030 0.9939 0.9940 0.9944 0.9964 
0.040 0.9885 0.9890 0.9884 0.9920 
0.050 0.9803 0.9807 0.9835 0.9854 
0.060 0.9703 0.9708 0.9733 0.9780 
0.070 0.9548 0.9520 0.9594 0.9725 
0.080 0.9324 0.9305 0.9332 0.9530 
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and msq(p ) = 0 for p ~> Pc, should have no turning point, in contrast to the 
mL, sq(P ) curves associated with finite lattices. 

Let PL, sq be the turning point of mL, sq(p). Then, under the above 
assumption that msq(p ) is turning point free and because of the empirical 
turning point drift to the left (see Fig. 2) with increasing L, we conclude 
that Pc, sq <PL, sq and that 

pc, sq = lim fiL, sq (3.1) 
L ~ o o  
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Fig. 2. The presentat ion of estimates /~p,L ........ q ( s =  15, r =  1, n = 6 0  for L =  100 and 
p > 0.12, otherwise n = 120) is graphically continued for p > 0.08. Small circles, triangles, dots 
and squares mark/i..,~q from simulations for L = 10, 20, 50, and 100, respectively, on square  
L x L lattices. The plus signs mark  empirical turning points for the mL,~q(p)-curves. 
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Table III. CPU Time (wi thout  Paging) in Seconds Used on an 
IBM RS6000/550 when Calculating fJp, L.,,.r.s,~q for Selected Values of L and p 
and wi th  Sample Sizes n = 1 2 0 ,  r = l ,  s=15 ,  for Square L x L  Lattices under 

Periodic Boundary Conditions 

L = 20 L = 50 L = 100 

p 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 

c P u  2 5 12 20 94 350 192 1762 5348 

F r o m  Fig. 2, we est imate 

plo,~q~0.137, /~2o, sq~0.127,  /35O, sq~0.120 , /~1oo, sq~0.115 (3.2) 

and ext rapola te  by means  of a concave empirical  " turning point  curve" that  
limL_. ~ /3L, sq ~ 0.1 and so by (3.1) we obta in  

pc, sq ~ 0.1 (3.3) 

Our  est imate is in good  agreement  with the est imates Pc, sq ,~0.099 by 
Grinste in  et al. (7) and  Pc, sq ~ 0.105 by Freund  and Grassberger .  (6) 

N o w  let ~.L, sq(P) in 0 ~< p ~< 0.5 be the finite lattice analogue to •sq(P) and 
let }-L, sq(P) take its global  m a x i m u m  at PL*,sq. Then  the * PL,~q drift with 
increasing L to the left to p*q as indicated by 

plo,~q ~ 0.130, p*o, sq ,,~ 0.128, * pso, sq ~ 0.125, P*oo, sq ~ 0.119 

Since for L >i 20 the est imates (3.2) of turning points/~L, sq 
cor responding  est imates of P*,sq we infer that  

are close to the 

p s * =  lim p* ,sq= lira /~L, sq=Pc,  sq (3.4) 
L - - + ~  L ~  

regarding (3.1). 
As for the comput ing  t ime used when est imat ing grounds ta te  properties,  

see Table  III .  
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